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An alternative way of refining phases with the origin-free modulus sum function

S is shown that, instead of applying the tangent formula in sequential mode

[Rius (1993). Acta Cryst. A49, 406–409], applies it in parallel mode with the help

of the fast Fourier transform (FFT) algorithm. The test calculations performed

on intensity data of small crystal structures at atomic resolution prove the

convergence and hence the viability of the procedure. This new procedure called

S-FFT is valid for all space groups and especially competitive for low-symmetry

ones. It works well when the charge-density peaks in the crystal structure have

the same sign, i.e. either positive or negative.

1. Introduction

Recently, it was shown that the maximum-likelihood estimate

of the phases of the structure factors corresponds to the

maximum of the likelihood function L (Rius, 2006), which

after some approximations can be simplified to

Lð�Þ ’ c
Q
H

expfðjGHj � hjGjiÞjGHð�Þj=�
2
Hg: ð1Þ

|GH| and |GH(�)| are, respectively, the observed and calcu-

lated structure-factor amplitudes of the squared electron-

density distribution (�2) with associated phases  H and c is a

scaling constant. The symbol H stands for both the strongest

and weakest reflections, while � denotes the collectivity of

phases ’h associated with the amplitudes |Eh| of the largest h

reflections corresponding to the electron-density distribution

(�). In practice, the |GH| are not directly measurable quan-

tities. However, if it is assumed for simplicity that � corre-

sponds to a crystal structure with N equal atoms in the unit cell

following P1 space-group symmetry, they can be derived from

the observed |E| values through the simple relationship |GH| =

(1/N1/2)|EH|. Hence, expression (1) becomes

Lð�Þ ’ c
Q
H

expfð1=N1=2ÞðjEHj � hjEjiÞjGHð�Þj=�
2
Hg: ð2Þ

If the �2
H are assumed to be equal for all H, the scaling

constant K = N�1/2��2 can be introduced and, by adding the

exponents, the origin-free modulus sum function results:

S ¼ K
P
H

½jEHj � hjEji�jGHð�Þj: ð3Þ

Since the maximum of S corresponds to the maximum of L,

the refined � maximizing S will give the maximum-likelihood

estimate of the phases. To find the � maximizing S, the phase

 H = f(�) of the complex conjugate of G�H(�) is introduced.

Then (3) can be expressed as

S ¼ K
P
H

½jEHj � hjEji� expði HÞG�Hð�Þ: ð4Þ

From Fourier theory, G�H can be expressed in terms of the

Fourier coefficients of �,

G�Hð�Þ ¼ V�1
P

h

jE�hjjE�Hþhj exp ið’�h þ ’�HþhÞ; ð5Þ

so that in view of (5), (4) becomes

S ¼ ðK=VÞ
P
H

ðjEHj � hjEjiÞ expði HÞ

�
P

h

jE�hjjEh�Hj exp ið’�h þ ’h�HÞ: ð6Þ

Finally, rearranging the summations in (6), it follows that

S ¼
P

h

jE�hj expði’�hÞ ðK=VÞ
P
H

ðjEHj � hjEjiÞ expði HÞEh�H

� �
:

ð7Þ

One way of maximizing S is by means of improved tangent

formulae (TF). In practice, there are two possible modes of

performing a TF phase refinement.

(i) The sequential mode. The initial set � of random phase

values is introduced in the TF. In this way, a first estimate of

the phase ’h is obtained. This new value replaces the old value

in �. With the updated �, the ’ value of the next reflection is

computed. This process is repeated until all h reflections in the

file have been treated. If there are still changes, the refinement

starts again with the first h reflection until no modifications are

observed. This sequential mode is very effective and can be

easily applied in reciprocal space (Debaerdemaeker et al.,

1985; Rius, 1993). From (7), it follows that, when the

value of ’h is equal to the phase value of the summationP
H(|EH| � h|E|i) exp(i H) Eh�H (with H including both large

and weak reflections), then S is maximal. Notice that for large

crystal structures the total number of terms in the summation

becomes prohibitive. Introducing a higher cut-off limit for the

E values in expression (5), e.g. 1.6 instead of 1.35, reduces this



number at the cost of lowering the accuracy of the calculated

G(�)’s.

(ii) The parallel mode. Like in mode (i), the initial set � of

random phases is introduced in the TF and the first estimate of

’h obtained. The new value of ’h is then stored without

updating �, so that the phase value of the next h reflection is

still determined with the initial set � of phase values. Only

when all h reflections have been treated will � be updated.

This process is repeated until no more significant changes in

the phase values are observed. Since all phase values are

computed from the same �, this calculation can be done

applying the FFT algorithm. In the next section, such a

procedure is described.

To avoid confusion, the procedure maximizing S with the

tangent formula in sequential mode will be called S-TF, while

the one based on the parallel mode will be denoted by S-FFT.

2. The S-FFT phase refinement method

First let the expression

DHð�Þ ¼ ðjEHj � hjEjiÞ expði HÞ ð8Þ

in (7) represent the Fourier coefficients of the modified elec-

tron-density function �0sq. Then (7) can be written in the more

compact form

S ¼ K
P

h

E�h V�1
P
H

DHð�ÞEh�H

� �
ð9Þ

¼ K
P

h

jE�hj expði’�hÞQhð�Þ: ð10Þ

The magnitudes QH(�) represent the Fourier coefficients of

the product function

�mð�Þ ¼ �
0
sqð�Þ�ð�Þ; ð11Þ

that is

QHð�Þ ¼
R
v

�mð�Þ expði2�HrÞ dV: ð12Þ

It is obvious from the analysis of (10) that, for a fixed set of

Qh(�) magnitudes, the new estimates of ’ maximizing S can

be obtained from the tangent formula

’hðnewÞ ¼ phase of fQhð�oldÞg: ð13Þ

In practice, all QH(�old) and, consequently, all new phase

estimates ’, are calculated simultaneously applying the FFT

algorithm to (12). Moreover, since the S-FFT procedure does

not involve the condition  h = ’h, the refinement can produce

either � or �� as solutions when starting from random phases.

The details of the iterative S-FFT phase refinement procedure

are described in Fig. 1. However, since this procedure supplies

all new ’h values at the same time, no warranty exists that,

when substituting all these new ’h estimates to give �new,

S(�new) will be a maximum. Consequently, it is necessary to

check the convergence of this iterative procedure experi-

mentally. To follow the convergence during the phase refine-

ment, the correlation coefficient

CC ¼
P
H

jEHjjQHð�Þj

� �2. P
H

jEHj
2

� � P
H

jQHð�Þj
2

� �� �

ð14Þ

is used as figure of merit. The refinement stops when no more

significant changes in CC are observed or, alternatively, a

given preset number of cycles is reached. At the end, to

discriminate between the positive and negative crystal struc-

ture solutions, the fraction of negative pixels in �m is calcu-

lated. If the fraction lies in the 0.28–0.30 range, the positive

solution has been reached; on the contrary, if the fraction falls

between 0.70 and 0.72, the negative solution has been refined

and, consequently, � rad must be added to the refined phase

values to get the positive solution.
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Table 1
Relevant crystal data of the compounds selected for checking the viability
of the S-FFT phase refinement procedure; the resolution limit is given by
the d spacing in Å and B is the overall temperature parameter in Å2.

Code Unit-cell content Space group d B

PGE2a C20H32O5 P1 1.00 5.6
MBH2b C45H72O9 P1 0.85 4.7
TVALc C108H180N12O36 P1 0.82 5.4
NEWQBd C96H80N8O20 P�11 as P1 1.04 2.2
GOLDMAN2e C224H128 Cc 0.76 3.3
BHATf C20H16F8N20O36 Pc 0.86 4.0
HOV1g Pr56Ni32Si36 C2/m as Cm 0.78 0.6
MUNICH1h C160H128 C2 0.89 3.8
BIHi C56H152B36O12N4S8 P21/c as Pc 0.84 3.6
CORTISONj C84H112O20 P212121 0.89 3.3
BNAk C40B36H100Na4O12S8 Pnma as P212121 0.84 3.9
WINTER2l C110H178Cl12N22O32 P21 0.84 6.6
TOTCm C198H216O36 P61 1.00 4.7
TUR10n C180H288O24 P6322 1.00 4.2
BEDo C208H208N32O32 I4 0.90 4.1
ALFA1p C328H500N65O110 P1 0.90 4.2

References: (a) DeTitta et al. (1980); (b) Poyser et al. (1986); (c) Smith et al. (1975); (d)
Grigg et al. (1978); (e) Irngartinger et al. (1981); ( f ) Bhat & Ammon (1990); (g)
Hovestreydt et al. (1983); (h) Szeimies-Seebach et al. (1978); (i) Teixidor et al. (1991); ( j)
Declercq et al. (1972); (k) Teixidor et al. (1990); (l) Butters et al. (1981); (m) Williams &
Lawton (1975); (n) Braekman et al. (1981); (o) Sheldrick et al. (1978); (p) Privé et al.
(1999).

Figure 1
Iterative S-FFT phase refinement procedure. The initial phases (upper
right corner) are combined with the experimental amplitudes to compute
the electron density �. Most existing FFT-based structure-solution
methods manipulate � in real space (broken arrow) to yield a modified
one, �m. In the S-FFT procedure, this modification is done automatically
with the help of two additional Fourier transforms (at the left). The
Fourier transform of �m yields the new structure-factor estimates.



3. Test calculations

The test calculations were performed on the intensity data of

the crystal structures summarized in Table 1.

A first series of test calculations was carried out to check the

influence of the h|E|i value on the effectiveness of the S-FFT

phase refinement. It is known that the h|E|i values normally

employed when refining with the S-TF lie between 0.85 and

1.05, which are the values that result for an approximately

equal number of large and weak reflections. In general, the

S-TF refinement is rather insensitive to the particular value of

h|E|i used provided that it falls within this interval. To confirm

that the S-FFT refinement behaves in a similar way, some

calculations with different h|E|i values and two cut-off values

|E|lim were carried out. The results given in Table 2 confirm the

expected similarity.

The aim of the second series of test calculations is to prove

the convergence and hence the viability of the S-FFT phase

refinement. To this purpose, the XLENS program (Rius, 1993)

was modified to incorporate the S-FFT phase-refinement

procedure described in Fig. 1. At the beginning of each cycle,

the new � values are computed using the largest structure

factors only. Table 3 lists the test results. To make comparison

between calculations from different crystal structures easier,

the h|E|i values were arbitrarily fixed to one. This was achieved

by selecting only those large reflections with |E| values greater

than |E|lim = 1.35 and adjusting the number of weak |E| values

to give h|E|i ’ 1. Inspection of Table 3 shows that both

convergence and number of successful trials is excellent for

small crystal structures refined in P1 and for compounds

allowing the origin of the unit cell to float on a plane. Table 3

also includes additional test calculations for space groups

having the unit-cell origin fixed or restricted to one dimension.

In general, the number of successful trials is here much lower.

This is not surprising since a similar behaviour was already

found some years ago when studying the practical application

of the S-TF (Rius et al., 1995). Table 3 also indicates that the

number of successful trials obtained with the S-FFT and the

S-TF is similar for all test structures. A point of practical

importance is that, for a given structure, the correct solutions

of the S-FFT procedure converged to the same CC value, i.e.

to the largest value that falls between 0.85 and 0.93 depending

on the data resolution. Although the purpose of the present

contribution is not an exhaustive check on the applicability of

the S-FFT to large crystal structures, a preliminary test on the

polypeptide ALFA1 has been performed using the same

refinement parameters as for the smaller crystal structures. It

can be seen in Table 3 that one solution is produced every 120

trials. The average CPU time for one trial, in a rather old

computer (Pentium 3, 800 MHz, Ram 256 Mb, 32 bits Fortran

compiler), is 16 min for ALFA1 (�179 cycles), 1.2 min for

TVAL (�87 cycles) and 20 s for MBH2 (�64 cycles). For the

S-TF approach, the corresponding CPU times are 2.5 s for

TVAL and 1 s for MBH2.

4. Conclusions

A new direct phasing method based on the maximization of

the origin-free modulus sum function with the TF in parallel

mode computed using the FFT algorithm has been derived.

This method requires (i) the charge density to be either

positive or negative in order to allow the derivation of the

moduli |GH| from the experimental |EH| and (ii) the resolution

of the intensity data to be high enough to produce accurate

calculated amplitudes |G�H(�)| = exp(i H)G�H(�). Since no

explicit use of the condition  h = ’h is made, the procedure

can supply either the positive or the negative correct solution.

This could be useful for example in single-crystal neutron

diffraction studies for unit cells with the protons being the

dominant scatterers.

From the analysis of the test calculations, it can be

concluded that: (i) the degree of convergence of TF refine-

ments in parallel and sequential mode is similar at least for
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Table 3
Results of the S-FFT phase refinement procedure for different
compounds.

The respective data resolution limits are the d values given in Table 1. In all
cases, the number of weak |E|’s was chosen to give h|E|i = 1. The range of cycles
per trial given is based on the end criterion (|�CC| < 0.0003 for the last two
cycles). The last column indicates the number of solutions with positive
electron density. It can be seen that both S-FFT and S-TF procedures yield
similar success ratios, although the S-TF is much more efficient in computing
time.

Code

No. of
refined
phases

No. of
weak
|E|’s

No. of
solutions
with
S-FFT/ S-TF

No. of
trials and
(cycles)

No. of
solutions
with
positive �

PGE2 161 175 21 / 25 25 (11–37) 11
MBH2 580 557 24 / 24 25 (15–70) 12
TVAL 1043 1253 23 / 25 25 (19–54) 17
NEWQB 663 638 24 / 25 25 (21–60) 15
GOLDMAN2 607 583 25 / 25 25 (16–45) 9
BHAT 285 269 11 / 16 25 (24–49) 3
HOV1 518 496 22 / 25 25 (14–67) 14
MUNICH1 352 333 2 / 2 50 (18–55) 0
BIH 661 636 25 / 25 25 (10–20) 16
CORTISON 247 231 6 / 14 50 (17–47) 1
BNA 303 286 5 / 7 25 (9–12) 2
WINTER2 1045 1013 6 / 1 25 (30–53) 1
TOTC 301 284 20 / 25 25 (17–51) 8
TUR10 160 150 6 / 8 50 (20 fixed) 3
BED 285 268 8 / 8 25 (18–50) 5
ALFA1 3772 3771 3 / † 360 (88–179) 0

† The S-TF refinement with the same control parameters could not be done due to the
large number of triplets generated.

Table 2
Compound TVAL: number of successful trials out of a total of 25 for
different h|E|i and |E|lim.

The respective CC values for the correct and wrong solutions were 0.87 and
0.83 (for |E|lim = 1.35) and 0.88 and 0.85 (for |E|lim = 1.25). The results in this
table show the tolerance of the S-FFT refinement to different h|E|i values.

Average |E| value

|E|lim 0.85 0.90 1.00 1.10 1.20

1.35 23 24 23 17 14
1.25 23 23 25 21 14



small crystal structures; (ii) for small crystal structures, TF

refinement in sequential mode is faster, although this is not

very important in practice due to the high success ratios

(especially for low-symmetry space groups); (iii) for medium-

scale crystal structures, the S-FFT refinement imposes no

limitation on the cut-off limit of the large E values. This

difference with respect to the S-TF is very important, since the

principal limitation of the latter, that is the inaccuracy of

G(�), disappears. The application of the S-FFT refinement to

large structures will be the subject of a separate investigation.

In the literature, there are other ab initio crystal-structure-

solution algorithms alternating between real and reciprocal

space, making use of the Fourier transform and doing part of

the job by imposing constraints on the electron density (Miller

et al., 1993; Brenner et al., 1997; Sheldrick, 1998; Oszlányi &

Süto��, 2004, 2005). One of the peculiarities of the method

described here is that the modification of the electron density

is not performed in real space but involves an additional

reciprocal-space part. This causes the computation to be

somewhat lengthier, but as a counterpart the method

converges quickly without the previous estimation of

empirical parameters. This should offer new possibilities in

fields like powder and surface X-ray diffraction where the

electron density can be easily modified in real space, thus

enabling additional control of the phase-refinement process

(Baerlocher et al., 2006). In this way, methods like the one

based on the S-TF and described in Rius et al. (2000) for the

treatment of accidental peak overlap in powder diffraction

could be reformulated and worked out more easily.
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